Lineare Algebra Beispiele

Bestimme den Definitionsbereich 16x^2+25y^2+32x^2-100y-284=0
Schritt 1
Addiere und .
Schritt 2
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Potenziere mit .
Schritt 4.1.2
Mutltipliziere mit .
Schritt 4.1.3
Wende das Distributivgesetz an.
Schritt 4.1.4
Mutltipliziere mit .
Schritt 4.1.5
Mutltipliziere mit .
Schritt 4.1.6
Addiere und .
Schritt 4.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.7.1
Faktorisiere aus heraus.
Schritt 4.1.7.2
Faktorisiere aus heraus.
Schritt 4.1.7.3
Faktorisiere aus heraus.
Schritt 4.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.8.1
Faktorisiere aus heraus.
Schritt 4.1.8.2
Schreibe als um.
Schritt 4.1.8.3
Füge Klammern hinzu.
Schritt 4.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Vereinfache .
Schritt 5
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Potenziere mit .
Schritt 5.1.2
Mutltipliziere mit .
Schritt 5.1.3
Wende das Distributivgesetz an.
Schritt 5.1.4
Mutltipliziere mit .
Schritt 5.1.5
Mutltipliziere mit .
Schritt 5.1.6
Addiere und .
Schritt 5.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.7.1
Faktorisiere aus heraus.
Schritt 5.1.7.2
Faktorisiere aus heraus.
Schritt 5.1.7.3
Faktorisiere aus heraus.
Schritt 5.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.8.1
Faktorisiere aus heraus.
Schritt 5.1.8.2
Schreibe als um.
Schritt 5.1.8.3
Füge Klammern hinzu.
Schritt 5.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 5.2
Mutltipliziere mit .
Schritt 5.3
Vereinfache .
Schritt 5.4
Ändere das zu .
Schritt 5.5
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.5.1
Faktorisiere aus heraus.
Schritt 5.5.2
Faktorisiere aus heraus.
Schritt 5.5.3
Faktorisiere aus heraus.
Schritt 6
Vereinfache den Ausdruck, um nach dem -Teil von aufzulösen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Potenziere mit .
Schritt 6.1.2
Mutltipliziere mit .
Schritt 6.1.3
Wende das Distributivgesetz an.
Schritt 6.1.4
Mutltipliziere mit .
Schritt 6.1.5
Mutltipliziere mit .
Schritt 6.1.6
Addiere und .
Schritt 6.1.7
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.7.1
Faktorisiere aus heraus.
Schritt 6.1.7.2
Faktorisiere aus heraus.
Schritt 6.1.7.3
Faktorisiere aus heraus.
Schritt 6.1.8
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.8.1
Faktorisiere aus heraus.
Schritt 6.1.8.2
Schreibe als um.
Schritt 6.1.8.3
Füge Klammern hinzu.
Schritt 6.1.9
Ziehe Terme aus der Wurzel heraus.
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Vereinfache .
Schritt 6.4
Ändere das zu .
Schritt 6.5
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.5.1
Faktorisiere aus heraus.
Schritt 6.5.2
Faktorisiere aus heraus.
Schritt 6.5.3
Faktorisiere aus heraus.
Schritt 7
Die endgültige Lösung ist die Kombination beider Lösungen.
Schritt 8
Setze den Radikanden in größer als oder gleich , um zu ermitteln, wo der Ausdruck nicht definiert ist.
Schritt 9
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Teile jeden Ausdruck in durch .
Schritt 9.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 9.1.2.1.2
Dividiere durch .
Schritt 9.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.3.1
Dividiere durch .
Schritt 9.2
Subtrahiere von beiden Seiten der Ungleichung.
Schritt 9.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 9.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 9.3.2.2
Dividiere durch .
Schritt 9.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.3.3.1
Dividiere durch .
Schritt 9.4
Take the specified root of both sides of the inequality to eliminate the exponent on the left side.
Schritt 9.5
Vereinfache die Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.1.1
Ziehe Terme aus der Wurzel heraus.
Schritt 9.5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.2.1.1
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.5.2.1.1.1
Faktorisiere aus heraus.
Schritt 9.5.2.1.1.2
Schreibe als um.
Schritt 9.5.2.1.2
Ziehe Terme aus der Wurzel heraus.
Schritt 9.5.2.1.3
Der Absolutwert ist der Abstand zwischen einer Zahl und null. Der Abstand zwischen und ist .
Schritt 9.6
Schreibe als abschnittsweise Funktion.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.6.1
Um das Intervall für den ersten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes nicht negativ ist.
Schritt 9.6.2
Entferne den Absolutwert in dem Teil, in dem nicht negativ ist.
Schritt 9.6.3
Um das Intervall für den zweiten Teil zu bestimmen, ermittele, wo das Innere des Absolutwertes negativ ist.
Schritt 9.6.4
Entferne den Absolutwert und multipliziere mit in dem Teil, in dem negativ ist.
Schritt 9.6.5
Schreibe als eine abschnittsweise Funktion.
Schritt 9.7
Bestimme die Schnittmenge von und .
Schritt 9.8
Löse , wenn ergibt.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.8.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.8.1.1
Teile jeden Term in durch . Wenn beide Seiten der Ungleichung mit einen negativen Wert multipliziert oder dividiert werden, kehre die Vorzeichen der Ungleichung um.
Schritt 9.8.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.8.1.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 9.8.1.2.2
Dividiere durch .
Schritt 9.8.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.8.1.3.1
Bringe die negative Eins aus dem Nenner von .
Schritt 9.8.1.3.2
Schreibe als um.
Schritt 9.8.1.3.3
Mutltipliziere mit .
Schritt 9.8.2
Bestimme die Schnittmenge von und .
Schritt 9.9
Ermittele die Vereinigungsmenge der Lösungen.
Schritt 10
Der Definitionsbereich umfasst alle Werte von , für die der Ausdruck definiert ist.
Intervallschreibweise:
Aufzählende bzw. beschreibende Mengenschreibweise:
Schritt 11